The permeability of red blood cells to chloride, urea and water.
نویسنده
چکیده
This study extends permeability (P) data on chloride, urea and water in red blood cells (RBC), and concludes that the urea transporter (UT-B) does not transport water. P of chick, duck, Amphiuma means, dog and human RBC to (36)Cl(-), (14)C-urea and (3)H2O was determined under self-exchange conditions. At 25°C and pH 7.2-7.5, PCl is 0.94 × 10(-4)-2.15 × 10(-4) cm s(-1) for all RBC species at [Cl]=127-150 mmol l(-1). In chick and duck RBC, P(urea) is 0.84 × 10(-6) and 1.65 × 10(-6) cm s(-1), respectively, at [urea]=1-500 mmol l(-1). In Amphiuma, dog and human RBC, P(urea) is concentration dependent (1-1000 mmol l(-1), Michaelis-Menten-like kinetics; K1/2;=127, 173 and 345 mmol l(-1)), and values at [urea]=1 mmol l(-1) are 29.5 × 10(-6), 467 × 10(-6) and 260 × 10(-6) cm s(-1), respectively. Diffusional water permeability, Pd, was 0.84 × 10(-3) (chick), 5.95 × 10(-3) (duck), 0.39 × 10(-3) (Amphiuma), 3.13 × 10(-3) (dog) and 2.35 × 10(-3) cm s(-1) (human). DIDS, DNDS and phloretin inhibit PCl by >99% in all RBC species. PCMBS, PCMB and phloretin inhibit P(urea) by >99% in Amphiuma, dog and human RBC, but not in chick and duck RBC. PCMBS and PCMB inhibit Pd in duck, dog and human RBC, but not in chick and Amphiuma RBC. Temperature dependence, as measured by apparent activation energy, EA, of PCl is 117.8 (duck), 74.9 (Amphiuma) and 89.6 kJ mol(-1) (dog). The EA of P(urea) is 69.6 (duck) and 53.3 kJ mol(-1) (Amphiuma), and that of Pd is 34.9 (duck) and 32.1 kJ mol(-1) (Amphiuma). The present and previous RBC studies indicate that anion (AE1), urea (UT-B) and water (AQP1) transporters only transport chloride (all species), water (duck, dog, human) and urea (Amphiuma, dog, human), respectively. Water does not share UT-B with urea, and the solute transport is not coupled under physiological conditions.
منابع مشابه
Osmoregulation in red blood cells of Bufo viridis.
The effect of hyperosmotic solution of NaCl, urea and mannitol on Bufo viridis red blood cells were studied. The percentage of water content in B. viridis red blood cells decreased significantly in NaCl and mannitol hypertonic solutions compared to urea hypertonic solution. The urea concentration found in red blood cells in a urea hypertonic solution was significantly higher than in red blood c...
متن کاملA Biomechanical Approach for the Study of Deformation of Red Cells in Narrow Capillaries
This model focuses on the behavior of capillary-tissue fluid exchange system when the diameter of the capillary is less than that of red cell. In vivo and in vitro observations indicate that the width of the gap between the red cell and the vessel wall is generally small compared to the radius of the capillary for a single file flow of red cell in narrow vessel, particularly if the vessel diame...
متن کاملSurface Coating of Red Blood Cells with Monomethoxy poly(ethylene glycol) Activated with Two Different Reagents
Methoxy poly(ethylene glycol) (mPEG) with molecular mass of 5 kDa activated with succinimidyl carbonate and cyanuric chloride, separately was covalently attached to human red blood cells (RBCs). Inhibition of agglutination by blood-type specific antisera (anti-D) was employed to evaluate the effect of the polymer coating. The remaining single cells after incubation with anti-D sera were cou...
متن کاملAt physiological expression levels the Kidd blood group/urea transporter protein is not a water channel.
The Kidd (JK) blood group locus encodes a urea transporter that is expressed on human red cells and on endothelial cells of the vasa recta in the kidney. Here, we report the identification in human erythroblasts of a novel cDNA, designated HUT11A, which encodes a protein identical to the previously reported erythroid HUT11 urea transporter, except for a Lys(44) --> Glu substitution and a Val-Gl...
متن کاملEnergetic and Molecular Water Permeation Mechanisms of the Human Red Blood Cell Urea Transporter B
Urea transporter B (UT-B) is a passive membrane channel that facilitates highly efficient permeation of urea. In red blood cells (RBC), while the major function of UT-B is to transport urea, it is assumed that this protein is able to conduct water. Here, we have revisited this last issue by studying RBCs and ghosts from human variants with defects of aquaporin 1 (AQP1) or UT-B. We found that UT...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of experimental biology
دوره 216 Pt 12 شماره
صفحات -
تاریخ انتشار 2013